Phenylacetate catabolism in Rhodococcus sp. strain RHA1: a central pathway for degradation of aromatic compounds.

نویسندگان

  • Juana María Navarro-Llorens
  • Marianna A Patrauchan
  • Gordon R Stewart
  • Julian E Davies
  • Lindsay D Eltis
  • William W Mohn
چکیده

In gram-negative bacteria, a pathway for aerobic degradation of phenylacetic acid (PAA) that proceeds via phenylacetyl-coenzyme A (CoA) and hydrolytic ring fission plays a central role in the degradation of a range of aromatic compounds. In contrast, the PAA pathway and its role are not well characterized in gram-positive bacteria. A cluster including 13 paa genes encoding enzymes orthologous to those of gram-negative bacteria was identified on the chromosome of Rhodococcus sp. strain RHA1. These genes were transcribed during growth on PAA, with 11 of the genes apparently in an operon yielding a single transcript. Quantitative proteomic analyses revealed that at least 146 proteins were more than twice as abundant in PAA-grown cells of RHA1 than in pyruvate-grown cells. Of these proteins, 29 were identified, including 8 encoded by the paa genes. Knockout mutagenesis indicated that paaN, encoding a putative ring-opening enzyme, was essential for growth on PAA. However, paaF, encoding phenylacetyl-CoA ligase, and paaR, encoding a putative regulator, were not essential. paaN was also essential for growth of RHA1 on phenylacetaldehyde, phenylpyruvate, 4-phenylbutyrate, 2-phenylethanol, 2-phenylethylamine, and l-phenylalanine. In contrast, growth on 3-hydroxyphenylacetate, ethylbenzene, and styrene was unaffected. These results suggest that the range of substrates degraded via the PAA pathway in RHA1 is somewhat limited relative to the range in previously characterized gram-negative bacteria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcriptomic assessment of isozymes in the biphenyl pathway of Rhodococcus sp. strain RHA1.

Rhodococcus sp. RHA1 grows on a broad range of aromatic compounds and vigorously degrades polychlorinated biphenyls (PCBs). Previous work identified RHA1 genes encoding multiple isozymes for most of the seven steps of the biphenyl (BPH) pathway, provided evidence for coexpression of some of these isozymes, and indicated the involvement of some of these enzymes in the degradation of BPH, ethylbe...

متن کامل

Transcriptomic analysis reveals a bifurcated terephthalate degradation pathway in Rhodococcus sp. strain RHA1.

Phthalate isomers and their esters are important pollutants whose biodegradation is not well understood. Rhodococcus sp. strain RHA1 is notable for its ability to degrade a wide range of aromatic compounds. RHA1 was previously shown to degrade phthalate (PTH) and to have genes putatively encoding terephthalate (TPA) degradation. Transcriptomic analysis of 8,213 genes indicated that 150 were up-...

متن کامل

Cloning and characterization of benzoate catabolic genes in the gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1.

Benzoate catabolism is thought to play a key role in aerobic bacterial degradation of biphenyl and polychlorinated biphenyls (PCBs). Benzoate catabolic genes were cloned from a PCB degrader, Rhodococcus sp. strain RHA1, by using PCR amplification and temporal temperature gradient electrophoresis separation. A nucleotide sequence determination revealed that the deduced amino acid sequences encod...

متن کامل

Biphenyl-inducible promoters in a polychlorinated biphenyl-degrading bacterium, Rhodococcus sp. RHA1.

Five transcriptional promoters of biphenyl-degradation genes in Rhodococcus sp. RHA1 were characterized. We newly identified the etbA4 promoter region, which was located adjacent upstream from a ferredoxin reductase gene, etbA4 and a dihydrodiol dehydrogenase gene, bphB2. The etbA4 promoter activity was determined in RHA1 using a promoter probe vector with a luxAB luciferase reporter gene, and ...

متن کامل

Characterization of transcriptional regulatory genes for biphenyl degradation in Rhodococcus sp. strain RHA1.

Transcription of the bphA1A2A3A4C1B genes, which are responsible for the conversion of biphenyl and polychlorinated biphenyl to the meta-cleavage products in Rhodococcus sp. strain RHA1, was examined. The bphA1 promoter (P(bphA1)) was identified and was shown to promote transcription induction by biphenyl and ethylbenzene. An 8.8-kb HindIII fragment that promotes transcription induction of P(bp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 187 13  شماره 

صفحات  -

تاریخ انتشار 2005